Pure Core 1 Past Paper Questions: Mark Scheme

Taken from MAP2

June 2001

3	(a)	Sub: $y = x + 1$	M1		
	()	*			
		Simplify to $x^2 - 4x + 4 = 0$	A1		
		$\Rightarrow (x-2)^2 = 0$	M1		
		x = 2, y = 3	A1	4	Must have both
	(b)	Tangent	B1	_	Must have supporting evidence / reason
		Equal roots or ≡	B1	2	for B1
		T. 4.1			
		Total	2.41	6	
4	(a)	f(x) = (x - a)Q(x)	M1		
		x = a then $f(a) = 0$	A1	2	
		, ,			
	(b)	f(1) = 1 + p + q + 6 = 0	M1		For factor theorem $\lceil f(1) = 0 \rceil$
	` ′	. ,			
		(p+q=-7)			[
		f(-1) = -1 + p - q + 6 = 8	M1		for remainder theorem $[f(-1) = 8]$
		(p-q=3)			
		(/	A1		
		p = -2		4	CAO
		q = -5	A1	4	V •
		Total		6	

January 2002

6	(a)	y = 5 - x	M1A1	2	Reasonable attempt at line between correct points for M1
	(b)	Perpendicular through C : $y = x - 1$	M1A1F	2	f.t. slope in (a), using point C
	(c)	x = 3 $y = 2$	M1		M1 for equating (their) correct lines M1A1 CAO
		(3,2)	A1	2	
	(d)	Radius = $\sqrt{8}$ Circle: $(x-5)^2 + (y-4)^2 = 8$	B1F		f.t. radius in (c)
		Circle: $(x-5)^2 + (y-4)^2 = 8$	B1	2	
		Total		8	

June 2002

Q	Solution	Marks	Total	Comments
1	Division process	M1		
	$x^2 + x(-6)$	A1		
	Fully correct	A1	(3)	NMS 3/3
				SC: $(x+1)(x^2+x-6)$ M1A1A0
	Total		(3)	

Q	Solution	Marks	Total	Comments PM
6 (a)	$(x+1)^2 + (y-3)^2 = 10$	M1A1	10441	Completing square; not necessarily in final form
	Centre (-1, 3)	A1√		shown here implies previous M1A1
	Radius $\sqrt{10}$	A1√	4]
(b)	Slope of line through (2, 4) and their centre ((-1, 3))	M1		Alternative Find gradient of tangent by differentiating
	$=+\frac{1}{3}$	A1√		eg x2 + y2 + 2x - 6y = 0 $2x + 2yy' + 2 - 6y' = 0$ M1-must have $2yy'$ A1-fully correct
	\Rightarrow slope of tangent = -3	B1√		Subs for slope $(=-3)$
	Tangent $\frac{y-4}{x-2} = -3$	M1		Then as on LHS for M1,A1
	y + 3x = 10	A1	5	(Any form)
	Total		(9)	

January 2003

Q	Solution	Marks	Total	Comments
1	Substitute $x = \pm 3$	M1		
	x = -3 correctly substituted	A1		
	p = -3	A1F	3	Division earns 0 marks
	Total		3	

3	(a)	$\left(\frac{3}{5} - 3\right)^2 + \left(\frac{4}{5} - 4\right)^2 = \left(\frac{12}{5}\right)^2 + \left(\frac{16}{5}\right)^2 = 16$	B1	1	Or use of $x^2 + y^2 - 6x - 8y + 9 = 0$
	(b)	$C_{\bullet}(3,4)$ O x	B1	2	Centre (PI) Touching Ox
	(c)	Gradient of OA, AC or OC found.	B1		This mark can be awarded in part (d) if not earned here
		Method to show O , A , C are colinear (e.g. show grad OA = grad AC or find the equation of AC and show that O lies on it).	M1		
		Accurate completion	A1	3	
	(d)	Grad of $T_A = -\frac{3}{4}$	B1F		Or find $\frac{dy}{dx} = \frac{6 - 2x}{2y - 8} \Rightarrow y' = -\frac{3}{4}$
		$T_A: y - \frac{4}{5} = -\frac{3}{4} \left(x - \frac{3}{5} \right)$	M1A1F		
		15x + 20y = 25	A1F	4	OE a, b, c integers
		3x + 4y = 5			
		Total		10	

Q	Solution	Marks	Total	Comments
		M1		attempt to complete squares
	$x^{2} + y^{2} + 4x - 14y + 4 = 0$ $(x+2)^{2} + (y-7)^{2} = 49$	A1 A1		for $(x+2)^2$ for $(y-7)^2$
	Radius 7 or $\sqrt{49}$	A1		(CAO)
	Centre (-2, 7)	A1F	5	
(b)	Q (-2, 7) O x	B1F B1F	2	Centre in 2nd quadrant Touching Ox
(c)	$PQ^2 = 8^2 + 1^2 (= 65)$	M1A1F		
	$PQ^{2} = 8^{2} + 1^{2} (= 65)$ $PR^{2} = PQ^{2} - QR^{2}$ $PR^{2} = 65 - 49 = 16 \Rightarrow PR = 4$	M1		
	$PR^2 = 65 - 49 = 16 \Rightarrow PR = 4$	A1F	4	
	Total		11	

January 2004

Q	Solution	Marks	Total	Comments
2 (a)(i)	Centre (2, -2)	B1		
()) fr		Attangeted
(11)	Complete the square	M1 A1		Attempted LHS correct
	$(x-2)^2 + (y+2)^2 = 20$	A1 A1		RHS correct
	$\therefore r^2 = 20$	711		
	$r = \sqrt{20}$ or (AWRT 4.47)	A1√	5	(on their RHS > 0)
(b)	Crosses x-axis when $y = 0$	M1		For use of $y = 0$
	2			
	$\therefore x^2 - 4x - 12 = 0$	m1		For solving quadratic by any correct
	(x-6)(x+2)=0			method attempted
	x = 6 or x = -2			-
	\therefore crosses x-axis at the points	A1	3	Accept $x = 6$ and $x = -2$
	(6,0) & (-2,0)	Ai	3	if $v = 0$ used
(c)	Slope of radius = $\frac{22}{4 - 2} = \frac{4}{2} = 2$	D1 A		
(6)	Slope of radius $=\frac{1}{4-2}=\frac{1}{2}=2$	В1 √		On their centre
	Use $m_1 m_2 = -1$ for perpendicular lines			
	\therefore slope of tangent = $-\frac{1}{2}$	B1√		On their slope of radius
	2			
	Equation of tangent is			If $m_1 m_2 = -1$ used then:
		M1		
	$y-2=-\frac{1}{2}(x-4)$			use of $y - y_1 = m(x - x_1)$
	2y - 4 = -x + 4			or any other correct method
	2y - 4 = -x + 4 x + 2y - 8 = 0	A1√	4	Accept any simplified form
	x + 2y - 6 = 0		4	(on their value of m)
	Total		12	

Q	Solution	Marks	Total	Comments
6(a)(i)	C(4, 3)	В1		
(ii)	r=2	В1	2	
(b)(i)	$(x-4)^{2} + (y-3)^{2} = 4 \text{and} y = x+1$ meet when $(x-4)^{2} + (x+1-3)^{2} = 4$ $\Rightarrow (x-4)^{2} + (x-2)^{2} = 4$ $(x^{2} - 8x + 16) + (x^{2} - 4x + 4) = 4$ $2x^{2} - 12x + 20 = 4$ $x^{2} - 6x + 8 = 0$ $(x-4)(x-2) = 0$	M1 M1 A1 M1		Substitution attempted or eliminating <i>x</i> Multiply out correctly and simplification attempted quadratic factorise/other valid method attempted
	x = 4 or $x = 2x = 4 \Rightarrow y = 5x = 2 \Rightarrow y = 3 A(4, 5) & B(2, 3)$	A1ft	5	Both points (cao)